• <cite id="16666"><s id="16666"></s></cite>
      1. <dd id="16666"></dd>
      2. 
        
        1. <address id="16666"><nav id="16666"></nav></address>

              <cite id="16666"></cite>
              <dd id="16666"></dd>

              一文讀懂OLED產(chǎn)品特性、結(jié)構(gòu)及市場前景

              2017/3/3 10:06:08 作者: 來源:電子發(fā)燒友
              摘要:隨著VR(虛擬現(xiàn)實(shí))、可穿戴設(shè)備等新電子產(chǎn)品的爆發(fā)趨勢,OLED 將帶來新的切入點(diǎn)。 OLED 終端產(chǎn)品市場爆發(fā)迅速,帶動(dòng) OLED 增長前景可期,綜合來看,今年很有可能成為“OLED元年”。

                蘋果公司表示今年將在iPhone 8上使用OLED屏幕,其在智能手機(jī)等電子產(chǎn)品領(lǐng)域的示范效應(yīng)將是OLED的一重要推動(dòng)力。隨著VR(虛擬現(xiàn)實(shí))、可穿戴設(shè)備等新電子產(chǎn)品的爆發(fā)趨勢,OLED 將帶來新的切入點(diǎn)。 OLED 終端產(chǎn)品市場爆發(fā)迅速,帶動(dòng) OLED 增長前景可期,綜合來看,今年很有可能成為“OLED元年”。

                本文就從OLED入手,介紹下OLED的發(fā)展歷史以及發(fā)展前景等,下面就跟隨小編走進(jìn)OLED的世界。。。

                有機(jī)發(fā)光二極管(OLED)是一種由柯達(dá)公司開發(fā)并擁有專利的顯示技術(shù),這項(xiàng)技術(shù)使用有機(jī)聚合材料作為發(fā)光二極管中的半導(dǎo)體材料。聚合材料可以是天然的,也可能是人工合成的,可能尺寸很大,也可能尺寸很小。蛋白質(zhì)和DNA就是有機(jī)聚合物的例子。OLED顯示技術(shù)廣泛的運(yùn)用于手機(jī)、數(shù)碼攝像機(jī)、DVD機(jī)、個(gè)人數(shù)字助理(PDA)、筆記本電腦、汽車音響和電視。OLED顯示器很薄很輕,因?yàn)樗皇褂帽彻狻LED顯示器還有一個(gè)最大為160度的寬屏視角,其工作電壓為二到十伏特?;贠LED的新技術(shù)有軟性有機(jī)發(fā)光顯示技術(shù)(FOLED),這項(xiàng)技術(shù)有可能在將來使得高度可攜帶、折疊的顯示技術(shù)變?yōu)榭赡堋?/p>

                發(fā)展歷史

                1947年出生于香港的美籍華裔教授鄧青云在實(shí)驗(yàn)室中發(fā)現(xiàn)了有機(jī)發(fā)光二極體,也就是OLED,由此展開了對OLED的研究,1987年,鄧青云教授和Van Slyke 采用了超薄膜技術(shù),用透明導(dǎo)電膜作陽極,Alq3作發(fā)光層,三芳胺作空穴傳輸層,Mg/Ag 合金作陰極,制成了雙層有機(jī)電致發(fā)光器件。1990 年,Burroughes 等人發(fā)現(xiàn)了以共軛高分子PPV為發(fā)光層的OLED,從此在全世界范圍內(nèi)掀起了OLED 研究的熱潮。鄧教授也因此被稱為“OLED之父”。

                在OLED的兩大技術(shù)體系中,低分子OLED技術(shù)主要集中于日本、韓國、中國臺灣這三個(gè)地區(qū),而高分子的PLED主要為歐洲廠家發(fā)展。另外,之前LG手機(jī)的OEL也是利用的OLED技術(shù)。OLED技術(shù)及專利由英國的科技公司CDT掌握。兩大技術(shù)體系相比,PLED產(chǎn)品的彩色化上仍有困難。而低分子OLED則較易彩色化。

                不過,雖然將來技術(shù)更優(yōu)秀的OLED會(huì)取代TFT等LCD,但有機(jī)發(fā)光顯示技術(shù)還存在使用壽命短、屏幕大型化難等缺陷。

                為了形像說明OLED構(gòu)造,可以將每個(gè)OLED單元比做一塊漢堡包,發(fā)光材料就是夾在中間的蔬菜。每個(gè)OLED的顯示單元都能受控制地產(chǎn)生三種不同顏色的光。OLED與LCD一樣,也有主動(dòng)式和被動(dòng)式之分。被動(dòng)方式下由行列地址選中的單元主動(dòng)發(fā)光。主動(dòng)方式下,OLED單元后有一個(gè)薄膜晶體管(TFT),發(fā)光單元在TFT驅(qū)動(dòng)下點(diǎn)亮。主動(dòng)式OLED比被動(dòng)式OLED省電,且顯示性能更佳。

                產(chǎn)品特性

                OLED顯示技術(shù)具有自發(fā)光的特性,采用非常薄的有機(jī)材料涂層和玻璃基板,當(dāng)有電流通過時(shí),這些有機(jī)材料就會(huì)發(fā)光,而且OLED顯示屏幕可視角度大,并且能夠節(jié)省電能,從2003年開始這種顯示設(shè)備在MP3播放器上得到了應(yīng)用。

                以O(shè)LED使用的有機(jī)發(fā)光材料來看,一是以染料及顏料為材料的小分子器件系統(tǒng),另一則以共軛性高分子為材料的高分子器件系統(tǒng)。同時(shí)由于有機(jī)電致發(fā)光器件具有發(fā)光二極管整流與發(fā)光的特性,因此小分子有機(jī)電致發(fā)光器件亦被稱為OLED(Organic Light EmitTIng Diode),高分子有機(jī)電致發(fā)光器件則被稱為PLED (Polymer Light-emitTIng Diode)。小分子及高分子OLED在材料特性上可說是各有千秋,但以現(xiàn)有技術(shù)發(fā)展來看,如作為監(jiān)視器的信賴性上,及電氣特性、生產(chǎn)安定性上來看,小分子OLED處于領(lǐng)先地位。當(dāng)前投入量產(chǎn)的OLED組件,全是使用小分子有機(jī)發(fā)光材料?! ?/p>

                結(jié)構(gòu)

                OLED的基本結(jié)構(gòu)是由一薄而透明具半導(dǎo)體特性之銦錫氧化物(ITO),與電力之正極相連,再加上另一個(gè)金屬陰極,包成如三明治的結(jié)構(gòu)。整個(gè)結(jié)構(gòu)層中包括了:空穴傳輸層(HTL)、發(fā)光層(EL)與電子傳輸層(ETL)。當(dāng)電力供應(yīng)至適當(dāng)電壓時(shí),正極空穴與陰極電荷就會(huì)在發(fā)光層中結(jié)合,產(chǎn)生光亮,依其配方不同產(chǎn)生紅、綠和藍(lán)RGB三原色,構(gòu)成基本色彩。OLED的特性是自己發(fā)光,不像TFT LCD需要背光,因此可視度和亮度均高,其次是電壓需求低且省電效率高,加上反應(yīng)快、重量輕、厚度薄,構(gòu)造簡單,成本低等,被視為 21世紀(jì)最具前途的產(chǎn)品之一。

                有機(jī)發(fā)光二極體的發(fā)光原理和無機(jī)發(fā)光二極體相似。當(dāng)元件受到直流電(Direct Current;DC)所衍生的順向偏壓時(shí),外加之電壓能量將驅(qū)動(dòng)電子(Electron)與空穴(Hole)分別由陰極與陽極注入元件,當(dāng)兩者在傳導(dǎo)中相遇、結(jié)合,即形成所謂的電子-空穴復(fù)合(Electron-Hole Capture)。而當(dāng)化學(xué)分子受到外來能量激發(fā)后,若電子自旋(Electron Spin)和基態(tài)電子成對,則為單重態(tài)(Singlet),其所釋放的光為所謂的熒光(Fluorescence);反之,若激發(fā)態(tài)電子和基態(tài)電子自旋不成對且平行,則稱為三重態(tài)(Triplet),其所釋放的光為所謂的磷光(Phosphorescence)。

                當(dāng)電子的狀態(tài)位置由激態(tài)高能階回到穩(wěn)態(tài)低能階時(shí),其能量將分別以光子(Light Emission)或熱能(Heat DissipaTIon)的方式放出,其中光子的部分可被利用當(dāng)做顯示功能;然有機(jī)熒光材料在室溫下并無法觀測到三重態(tài)的磷光,故PM-OLED元件發(fā)光效率之理論極限值僅25%。

                PM-OLED發(fā)光原理是利用材料能階差,將釋放出來的能量轉(zhuǎn)換成光子,所以我們可以選擇適當(dāng)?shù)牟牧袭?dāng)做發(fā)光層或是在發(fā)光層中摻雜染料以得到我們所需要的發(fā)光顏色。此外,一般電子與電洞的結(jié)合反應(yīng)均在數(shù)十納秒(ns)內(nèi),故PM-OLED的應(yīng)答速度非常快。

                1. S.:PM-OLED的典型結(jié)構(gòu)。典型的PM-OLED由玻璃基板、ITO(indium TIn oxide;銦錫氧化物)陽極(Anode)、有機(jī)發(fā)光層(Emitting Material Layer)與陰極(Cathode)等所組成,其中,薄而透明的ITO陽極與金屬陰極如同三明治般地將有機(jī)發(fā)光層包夾其中,當(dāng)電壓注入陽極的空穴(Hole)與陰極來的電子(Electron)在有機(jī)發(fā)光層結(jié)合時(shí),激發(fā)有機(jī)材料而發(fā)光。

                而發(fā)光效率較佳、普遍被使用的多層PM-OLED結(jié)構(gòu),除玻璃基板、陰陽電極與有機(jī)發(fā)光層外,尚需制作空穴注入層(Hole Inject Layer;HIL)、空穴傳輸層(Hole Transport Layer;HTL)、電子傳輸層(Electron Transport Layer;ETL)與電子注入層(Electron Inject Layer;EIL)等結(jié)構(gòu),且各傳輸層與電極之間需設(shè)置絕緣層,因此熱蒸鍍(Evaporate)加工難度相對提高,制作過程亦變得復(fù)雜。

                由于有機(jī)材料及金屬對氧氣及水氣相當(dāng)敏感,制作完成后,需經(jīng)過封裝保護(hù)處理。PM-OLED雖需由數(shù)層有機(jī)薄膜組成,然有機(jī)薄膜層厚度約僅1,000~1,500A°(0.10~0.15 um),整個(gè)顯示板(Panel)在封裝加干燥劑(Desiccant)後總厚度不及200um(0.2mm),具輕薄之優(yōu)勢。

                材料

                有機(jī)材料的特性深深地影響元件之光電特性表現(xiàn)。在陽極材料的選擇上,材料本身必需是具高功函數(shù)(High work function)與可透光性,所以具有4.5eV-5.3eV的高功函數(shù)、性質(zhì)穩(wěn)定且透光的ITO透明導(dǎo)電膜,便被廣泛應(yīng)用于陽極。在陰極部分,為了增加元件的發(fā)光效率,電子與電洞的注入通常需要低功函數(shù)(Low work function)的Ag、Al、Ca、In、Li與Mg等金屬,或低功函數(shù)的復(fù)合金屬來制作陰極(例如:Mg-Ag鎂銀)。

                適合傳遞電子的有機(jī)材料不一定適合傳遞空穴,所以有機(jī)發(fā)光二極體的電子傳輸層和空穴傳輸層必須選用不同的有機(jī)材料。目前最常被用來制作電子傳輸層的材料必須制膜安定性高、熱穩(wěn)定且電子傳輸性佳,一般通常采用螢光染料化合物。如Alq、Znq、Gaq、Bebq、Balq、DPVBi、ZnSPB、PBD、OXD、BBOT等。而空穴傳輸層的材料屬于一種芳香胺螢光化合物,如TPD、TDATA等有機(jī)材料。

                有機(jī)發(fā)光層的材料須具備固態(tài)下有較強(qiáng)螢光、載子傳輸性能好、熱穩(wěn)定性和化學(xué)穩(wěn)定性佳、量子效率高且能夠真空蒸鍍的特性,一般有機(jī)發(fā)光層的材料使用通常與電子傳輸層或電洞傳輸層所采用的材料相同,例如Alq被廣泛用于綠光,Balq和DPVBi則被廣泛應(yīng)用于藍(lán)光。

                一般而言,OLED可按發(fā)光材料分為兩種:小分子OLED和高分子OLED(也可稱為PLED)。小分子OLED和高分子OLED的差異主要表現(xiàn)在器件的制備工藝不同:小分子器件主要采用真空熱蒸發(fā)工藝,高分子器件則采用旋轉(zhuǎn)涂覆或噴涂印刷工藝。小分子材料廠商主要有:Eastman、Kodak、出光興產(chǎn)、東洋INK制造、三菱化學(xué)等;高分子材料廠商主要有:CDT、Covin、Dow Chemical、住友化學(xué)等。國際上與OLED有關(guān)的專利已經(jīng)超過1400份,其中最基本的專利有三項(xiàng)。小分子OLED的基本專利由美國Kodak公司擁有,高分子OLED的專利由英國的CDT(Cambridge DisPlay Technology)和美國的Uniax公司擁有。


              [NT:PAGE]

                工藝

                1. 氧化銦錫(ITO)基板前處理

                2.(1)ITO表面平整度:ITO已廣泛應(yīng)用在商業(yè)化的顯示器面板制造,其具有高透射率、低電阻率及高功函數(shù)等優(yōu)點(diǎn)。一般而言,利用射頻濺鍍法(RF sputtering)所制造的ITO,易受工藝控制因素不良而導(dǎo)致表面不平整,進(jìn)而產(chǎn)生表面的尖端物質(zhì)或突起物。另外高溫鍛燒及再結(jié)晶的過程亦會(huì)產(chǎn)生表面約10 ~ 30nm的突起層。這些不平整層的細(xì)粒之間所形成的路徑會(huì)提供空穴直接射向陰極的機(jī)會(huì),而這些錯(cuò)綜復(fù)雜的路徑會(huì)使漏電流增加。一般有三個(gè)方法可以解決這表面層的影響?U一是增加空穴注入層及空穴傳輸層的厚度以降低漏電流,此方法多用于PLED及空穴層較厚的OLED(~200nm)。二是將ITO玻璃再處理,使表面光滑。三是使用其它鍍膜方法使表面平整度更好。

                3.(2)ITO功函數(shù)的增加:當(dāng)空穴由ITO注入HIL時(shí),過大的位能差會(huì)產(chǎn)生蕭基能障,使得空穴不易注入,因此如何降低ITO / HIL接口的位能差則成為ITO前處理的重點(diǎn)。一般我們使用O2-Plasma方式增加ITO中氧原子的飽和度,以達(dá)到增加功函數(shù)之目的。ITO經(jīng)O2-Plasma處理后功函數(shù)可由原先之4.8eV提升至5.2eV,與HIL的功函數(shù)已非常接近。

                加入輔助電極,由于OLED為電流驅(qū)動(dòng)組件,當(dāng)外部線路過長或過細(xì)時(shí),于外部電路將會(huì)造成嚴(yán)重之電壓梯度,使真正落于OLED組件之電壓下降,導(dǎo)致面板發(fā)光強(qiáng)度減少。由于ITO電阻過大(10 ohm / square),易造成不必要之外部功率消耗,增加一輔助電極以降低電壓梯度成了增加發(fā)光效率、減少驅(qū)動(dòng)電壓的快捷方式。鉻(Cr:Chromium)金屬是最常被用作輔助電極的材料,它具有對環(huán)境因子穩(wěn)定性佳及對蝕刻液有較大的選擇性等優(yōu)點(diǎn)。然而它的電阻值在膜層為100nm時(shí)為2 ohm / square,在某些應(yīng)用時(shí)仍屬過大,因此在相同厚度時(shí)擁有較低電阻值的鋁(Al:Aluminum)金屬(0.2 ohm / square)則成為輔助電極另一較佳選擇。但是,鋁金屬的高活性也使其有信賴性方面之問題因此,多疊層之輔助金屬則被提出,如:Cr / Al / Cr或Mo / Al / Mo,然而此類工藝增加復(fù)雜度及成本,故輔助電極材料的選擇成為OLED工藝中的重點(diǎn)之一。

                1. 陰極工藝

                在高解析的OLED面板中,將細(xì)微的陰極與陰極之間隔離,一般所用的方法為蘑菇構(gòu)型法(Mushroom structure approach),此工藝類似印刷技術(shù)的負(fù)光阻顯影技術(shù)。在負(fù)光阻顯影過程中,許多工藝上的變異因子會(huì)影響陰極的品質(zhì)及良率。例如,體電阻、介電常數(shù)、高分辨率、高Tg、低臨界維度(CD)的損失以及與ITO或其它有機(jī)層適當(dāng)?shù)酿ぶ涌诘取?/p>

                1. 封裝

                ⑴吸水材料:一般OLED的生命周期易受周圍水氣與氧氣所影響而降低。水氣來源主要分為兩種:一是經(jīng)由外在環(huán)境滲透進(jìn)入組件內(nèi),另一種是在OLED工藝中被每一層物質(zhì)所吸收的水氣。為了減少水氣進(jìn)入組件或排除由工藝中所吸附的水氣,一般最常使用的物質(zhì)為吸水材(Desiccant)。Desiccant可以利用化學(xué)吸附或物理吸附的方式捕捉自由移動(dòng)的水分子,以達(dá)到去除組件內(nèi)水氣的目的。

               ?、乒に嚰霸O(shè)備開發(fā):封裝工藝之流程,為了將Desiccant置于蓋板及順利將蓋板與基板黏合,需在真空環(huán)境或?qū)⑶惑w充入不活潑氣體下進(jìn)行,例如氮?dú)?。值得注意的是,如何讓蓋板與基板這兩部分工藝銜接更有效率、減少封裝工藝成本以及減少封裝時(shí)間以達(dá)最佳量產(chǎn)速率,已儼然成為封裝工藝及設(shè)備技術(shù)發(fā)展的3大主要目標(biāo)。

                彩色化技術(shù)

                顯示器全彩色是檢驗(yàn)顯示器是否在市場上具有競爭力的重要標(biāo)志,因此許多全彩色化技術(shù)也應(yīng)用到了OLED顯示器上,按面板的類型通常有下面三種:RGB像素獨(dú)立發(fā)光,光色轉(zhuǎn)換(Color Conversion)和彩色濾光膜(Color Filter)。

                1.RGB象素獨(dú)立發(fā)光

                利用發(fā)光材料獨(dú)立發(fā)光是目前采用最多的彩色模式。它是利用精密的金屬蔭罩與CCD象素對位技術(shù),首先制備紅、綠、藍(lán)三基色發(fā)光中心,然后調(diào)節(jié)三種顏色組合的混色比,產(chǎn)生真彩色,使三色OLED元件獨(dú)立發(fā)光構(gòu)成一個(gè)像素。該項(xiàng)技術(shù)的關(guān)鍵在于提高發(fā)光材料的色純度和發(fā)光效率,同時(shí)金屬蔭罩刻蝕技術(shù)也至關(guān)重要。

                有機(jī)小分子發(fā)光材料AlQ3是很好的綠光發(fā)光小分子材料,它的綠光色純度,發(fā)光效率和穩(wěn)定性都很好。但OLED最好的紅光發(fā)光小分子材料的發(fā)光效率只有31mW,壽命1萬小時(shí),藍(lán)色發(fā)光小分子材料的發(fā)展也是很慢和很困難的。有機(jī)小分子發(fā)光材料面臨的最大瓶頸在于紅色和藍(lán)色材料的純度、效率與壽命。但人們通過給主體發(fā)光材料摻雜,已得到了色純度、發(fā)光效率和穩(wěn)定性都比較好的藍(lán)光和紅光。

                高分子發(fā)光材料的優(yōu)點(diǎn)是可以通過化學(xué)修飾調(diào)節(jié)其發(fā)光波長,現(xiàn)已得到了從藍(lán)到綠到紅的覆蓋整個(gè)可見光范圍的各種顏色,但其壽命只有小分子發(fā)光材料的十分之一,所以對高分子聚合物,發(fā)光材料的發(fā)光效率和壽命都有待提高。不斷地開發(fā)出性能優(yōu)良的發(fā)光材料應(yīng)該是材料開發(fā)工作者的一項(xiàng)艱巨而長期的課題。

                隨著OLED顯示器的彩色化、高分辨率和大面積化,金屬蔭罩刻蝕技術(shù)直接影響著顯示板畫面的質(zhì)量,所以對金屬蔭罩圖形尺寸精度及定位精度提出了更加苛刻的要求。

                1.光色轉(zhuǎn)換 光色轉(zhuǎn)換是以藍(lán)光OLED結(jié)合光色轉(zhuǎn)換

                膜陣列,首先制備發(fā)藍(lán)光OLED的器件,然后利用其藍(lán)光激發(fā)光色轉(zhuǎn)換材料得到紅光和綠光,從而獲得全彩色。該項(xiàng)技術(shù)的關(guān)鍵在于提高光色轉(zhuǎn)換材料的色純度及效率。這種技術(shù)不需要金屬蔭罩對位技術(shù),只需蒸鍍藍(lán)光OLED元件,是未來大尺寸全彩色OLED顯示器極具潛力的全彩色化技術(shù)之一。但它的缺點(diǎn)是光色轉(zhuǎn)換材料容易吸收環(huán)境中的藍(lán)光,造成圖像對比度下降,同時(shí)光導(dǎo)也會(huì)造成畫面質(zhì)量降低的問題。掌握此技術(shù)的日本出光興產(chǎn)公司已生產(chǎn)出10英寸的OLED顯示器。

                1.彩色濾光膜

                此種技術(shù)是利用白光OLED結(jié)合彩色濾光膜,首先制備發(fā)白光OLED的器件,然后通過彩色濾光膜得到三基色,再組合三基色實(shí)現(xiàn)彩色顯示。該項(xiàng)技術(shù)的關(guān)鍵在于獲得高效率和高純度的白光。它的制作過程不需要金屬蔭罩對位技術(shù),可采用成熟的液晶顯示器LCD的彩色濾光膜制作技術(shù)。所以是未來大尺寸全彩色OLED顯示器具有潛力的全彩色化技術(shù)之一,但采用此技術(shù)使透過彩色濾光膜所造成光損失高達(dá)三分之二。日本TDK公司和美國Kodak公司采用這種方法制作OLED顯示器。

                RGB像素獨(dú)立發(fā)光,光色轉(zhuǎn)換和彩色濾光膜三種制造OLED顯示器全彩色化技術(shù),各有優(yōu)缺點(diǎn)。可根據(jù)工藝結(jié)構(gòu)及有機(jī)材料決定。


              [NT:PAGE]

                驅(qū)動(dòng)方式

                OLED的驅(qū)動(dòng)方式分為主動(dòng)式驅(qū)動(dòng)(有源驅(qū)動(dòng))和被動(dòng)式驅(qū)動(dòng)(無源驅(qū)動(dòng))。

                一、無源驅(qū)動(dòng)(PM OLED)

                其分為靜態(tài)驅(qū)動(dòng)電路和動(dòng)態(tài)驅(qū)動(dòng)電路。

                ⑴靜態(tài)驅(qū)動(dòng)方式:在靜態(tài)驅(qū)動(dòng)的有機(jī)發(fā)光顯示器件上,一般各有機(jī)電致發(fā)光像素的陰極是連在一起引出的,各像素的陽極是分立引出的,這就是共陰的連接方式。若要一個(gè)像素發(fā)光只要讓恒流源的電壓與陰極的電壓之差大于像素發(fā)光值的前提下,像素將在恒流源的驅(qū)動(dòng)下發(fā)光,若要一個(gè)像素不發(fā)光就將它的陽極接在一個(gè)負(fù)電壓上,就可將它反向截止。但是在圖像變化比較多時(shí)可能出現(xiàn)交叉效應(yīng),為了避免我們必須采用交流的形式。靜態(tài)驅(qū)動(dòng)電路一般用于段式顯示屏的驅(qū)動(dòng)上。

               ?、苿?dòng)態(tài)驅(qū)動(dòng)方式:在動(dòng)態(tài)驅(qū)動(dòng)的有機(jī)發(fā)光顯示器件上人們把像素的兩個(gè)電極做成了矩陣型結(jié)構(gòu),即水平一組顯示像素的同一性質(zhì)的電極是共用的,縱向一組顯示像素的相同性質(zhì)的另一電極是共用的。如果像素可分為N行和M列,就可有N個(gè)行電極和M個(gè)列電極。行和列分別對應(yīng)發(fā)光像素的兩個(gè)電極。即陰極和陽極。在實(shí)際電路驅(qū)動(dòng)的過程中,要逐行點(diǎn)亮或者要逐列點(diǎn)亮像素,通常采用逐行掃描的方式,行掃描,列電極為數(shù)據(jù)電極。實(shí)現(xiàn)方式是:循環(huán)地給每行電極施加脈沖,同時(shí)所有列電極給出該行像素的驅(qū)動(dòng)電流脈沖,從而實(shí)現(xiàn)一行所有像素的顯示。該行不再同一行或同一列的像素就加上反向電壓使其不顯示,以避免“交叉效應(yīng)”,這種掃描是逐行順序進(jìn)行的,掃描所有行所需時(shí)間叫做幀周期。

                在一幀中每一行的選擇時(shí)間是均等的。假設(shè)一幀的掃描行數(shù)為N,掃描一幀的時(shí)間為1,那么一行所占有的選擇時(shí)間為一幀時(shí)間的1/N該值被稱為占空比系數(shù)。在同等電流下,掃描行數(shù)增多將使占空比下降,從而引起有機(jī)電致發(fā)光像素上的電流注入在一幀中的有效下降,降低了顯示質(zhì)量。因此隨著顯示像素的增多,為了保證顯示質(zhì)量,就需要適度地提高驅(qū)動(dòng)電流或采用雙屏電極機(jī)構(gòu)以提高占空比系數(shù)。

                除了由于電極的公用形成交叉效應(yīng)外,有機(jī)電致發(fā)光顯示屏中正負(fù)電荷載流子復(fù)合形成發(fā)光的機(jī)理使任何兩個(gè)發(fā)光像素,只要組成它們結(jié)構(gòu)的任何一種功能膜是直接連接在一起的,那兩個(gè)發(fā)光像素之間就可能有相互串?dāng)_的現(xiàn)象,即一個(gè)像素發(fā)光,另一個(gè)像素也可能發(fā)出微弱的光。這種現(xiàn)象主要是因?yàn)橛袡C(jī)功能薄膜厚度均勻性差,薄膜的橫向絕緣性差造成的。從驅(qū)動(dòng)的角度,為了減緩這種不利的串?dāng)_,采取反向截至法也是一行之有效的方法。

                帶灰度控制的顯示:顯示器的灰度等級是指黑白圖像由黑色到白色之間的亮度層次?;叶鹊燃壴蕉?,圖像從黑到白的層次就越豐富,細(xì)節(jié)也就越清晰?;叶葘τ趫D像顯示和彩色化都是一個(gè)非常重要的指標(biāo)。一般用于有灰度顯示的屏多為點(diǎn)陣顯示屏,其驅(qū)動(dòng)也多為動(dòng)態(tài)驅(qū)動(dòng),實(shí)現(xiàn)灰度控制的幾種方法有:控制法、空間灰度調(diào)制、時(shí)間灰度調(diào)制。

                二、有源驅(qū)動(dòng)(AM OLED)

                有源驅(qū)動(dòng)的每個(gè)像素配備具有開關(guān)功能的低溫多晶硅薄膜晶體管(LowTemperature Poly-Si Thin Film Transistor, LTP-Si TFT),而且每個(gè)像素配備一個(gè)電荷存儲電容,外圍驅(qū)動(dòng)電路和顯示陣列整個(gè)系統(tǒng)集成在同一玻璃基板上。與LCD相同的TFT結(jié)構(gòu),無法用于OLED。這是因?yàn)長CD采用電壓驅(qū)動(dòng),而OLED卻依賴電流驅(qū)動(dòng),其亮度與電流量成正比,因此除了進(jìn)行ON/OFF切換動(dòng)作的選址TFT之外,還需要能讓足夠電流通過的導(dǎo)通阻抗較低的小型驅(qū)動(dòng)TFT。

                有源驅(qū)動(dòng)屬于靜態(tài)驅(qū)動(dòng)方式,具有存儲效應(yīng),可進(jìn)行100%負(fù)載驅(qū)動(dòng),這種驅(qū)動(dòng)不受掃描電極數(shù)的限制,可以對各像素獨(dú)立進(jìn)行選擇性調(diào)節(jié)。

                有源驅(qū)動(dòng)無占空比問題,驅(qū)動(dòng)不受掃描電極數(shù)的限制,易于實(shí)現(xiàn)高亮度和高分辨率。

                有源驅(qū)動(dòng)由于可以對亮度的紅色和藍(lán)色像素獨(dú)立進(jìn)行灰度調(diào)節(jié)驅(qū)動(dòng),這更有利于OLED彩色化實(shí)現(xiàn)。

                有源矩陣的驅(qū)動(dòng)電路藏于顯示屏內(nèi),更易于實(shí)現(xiàn)集成度和小型化。另外由于解決了外圍驅(qū)動(dòng)電路與屏的連接問題,這在一定程度上提高了成品率和可靠性。

                三、兩者比較

                被動(dòng)式 主動(dòng)式

                瞬間高高密度發(fā)光(動(dòng)態(tài)驅(qū)動(dòng)/有選擇性) 連續(xù)發(fā)光(穩(wěn)態(tài)驅(qū)動(dòng))

                面板外附加IC芯片 TFT驅(qū)動(dòng)電路設(shè)計(jì)/內(nèi)藏薄膜型驅(qū)動(dòng)IC

                線逐步式掃描 線逐步式抹寫數(shù)據(jù)

                階調(diào)控制容易 在TFT基板上形成有機(jī)EL畫像素

                低成本/高電壓驅(qū)動(dòng) 低電壓驅(qū)動(dòng)/低耗電能/高成本

                設(shè)計(jì)變更容易、交貨期短(制造簡單) 發(fā)光組件壽命長(制程復(fù)雜)

                簡單式矩陣驅(qū)動(dòng)+OLED LTPS TFT+OLED


              [NT:PAGE]

                國際形勢

                OLED技術(shù)起源于歐美,但實(shí)現(xiàn)大規(guī)模產(chǎn)業(yè)化的國家/地區(qū)主要集中在東亞,如日本、韓國、中國等地區(qū)。

                全球OLED產(chǎn)業(yè)還處于產(chǎn)業(yè)化初期。全球涉足OLED產(chǎn)業(yè)的企業(yè)產(chǎn)品主要是小尺寸無源OLED器件,真正對LCD(液晶)構(gòu)成威脅的有源OLED器件,實(shí)現(xiàn)量產(chǎn)的只有少數(shù)幾家公司。

                中國雖具有一定的OLED產(chǎn)業(yè)基礎(chǔ),但產(chǎn)業(yè)鏈尚不完善,尤其是上游產(chǎn)品競爭力不強(qiáng)。關(guān)鍵設(shè)備以及整套設(shè)備的系統(tǒng)化技術(shù)等大都掌握在日本、韓國和歐洲企業(yè)手中

                市場前景

                一、2013年全球OLED電視機(jī)市場將達(dá)14億美元

                據(jù)市場研究公司iSuppli最新發(fā)表的研究報(bào)告稱,2013年全球OLED(有機(jī)發(fā)光二極管)電視機(jī)出貨量將從2007年的3000臺增長到280萬臺,復(fù)合年增長率為212.3%。從全球銷售收入看,2013年全球OLED電視機(jī)的銷售收入將從2007年的200萬美元增長到14億美元,復(fù)合年增長率為206.8%。

                iSuppli稱,OLED顯示技術(shù)要對市場產(chǎn)生真正的影響還需要克服一些挑戰(zhàn)。首先,AMOLED顯示屏制造工藝還不充分。隨著顯示屏尺寸的加大,成品率損失和制造損失也越來越大。此外,OLED顯示屏材料的使用壽命仍需要提高。AMOLED供應(yīng)商不能保證產(chǎn)量。不過,OLED電視機(jī)也有許多優(yōu)點(diǎn)。OLED電視不需要背光,因此比其它技術(shù)更省電和更多做的更薄。OLED電視響應(yīng)時(shí)間非???,在觀看電視的時(shí)候沒有移動(dòng)模糊的現(xiàn)象。此外,OLED電視比其它技術(shù)的色彩更豐富。

                索尼在2007年12月在日本市場推出了售價(jià)1800美元的11英寸OLED電視機(jī),首先進(jìn)入了這個(gè)市場。包括東芝和松下在內(nèi)的一些廠商預(yù)計(jì)將在2009年進(jìn)入這個(gè)市場。

                二、商品化過程

                1997年P(guān)ioneer發(fā)表了配備解析度為256x64的單色PM-OLED面板的車用音響;1999年Tohoku Pioneer成功開發(fā)出5.2吋、解析度為320x240 pixels、256色的全彩(Full color)PM-OLED面板;2000年Motorola移動(dòng)電話「Timeport」采用Tohoku Pioneer之1.8吋多彩(Area color)PM-OLED面板;2001年Samsung推出搭載全彩PM-OLED面板之行動(dòng)電話;2002年Fujitsu行動(dòng)電話F505i次屏幕搭配Tohoku Pioneer之1.0吋全彩PM-OLED面板,自此PM-OLED在行動(dòng)電話次螢?zāi)坏膽?yīng)用隨之大量興起。

                三、P-OLED微顯示器即將投入商用

                研發(fā)暨生產(chǎn)金氏記錄最小P-OLED屏幕的Micr oEmissive Displays(MED)公司,由日本數(shù)位相機(jī)廠NHJ推出首宗消費(fèi)電子產(chǎn)品,結(jié)合錄音撥放MP3和高解析度數(shù)位相機(jī),MED的ME3203為低耗電1/4 VGA解析度(3 20 x RGB x 240)P-OLED微顯示器(Microdis play),將用在新產(chǎn)品的電子觀景窗和目鏡上。據(jù)了解,這種全球新產(chǎn)品是由臺灣某數(shù)位相機(jī)廠設(shè)計(jì)研發(fā)出來。

                MED策略長安德伍(Ian Underwood)表示,針對微顯示器的技術(shù)商業(yè)化,MED已投入五年的時(shí)間,已臻成熟,且做到世界級的獨(dú)特技術(shù)層級。


              凡本網(wǎng)注明“來源:阿拉丁照明網(wǎng)”的所有作品,版權(quán)均屬于阿拉丁照明網(wǎng),轉(zhuǎn)載請注明。
              凡注明為其它來源的信息,均轉(zhuǎn)載自其它媒體,轉(zhuǎn)載目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)及對其真實(shí)性負(fù)責(zé)。若作者對轉(zhuǎn)載有任何異議,請聯(lián)絡(luò)本網(wǎng)站,我們將及時(shí)予以更正。
              日本成人有码尤物,亚洲欧美成人精品香蕉网,亚洲国产成人精品无码区密柚,成人乱人伦免费视频网 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();